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SUMMARY 

A general approach to the theory of chromatography, based on the method 
of moments, is presented. A detailed treatment of packed columns is given,. and the 
steady-state equations for solute transport in such columns are derived. Special con- 
sideration is given to the effects that arise from variations in the properties of the 
packing material. It is shown that non-uniformities in the packing material tend to 
make the chromatographic peaks more unsymmetrical_ 

INTRODUCT 

The main obstacle to the development of an universal theory of chromato- 
graphy is not the lack of knowledge of the basic physical processes involved, but the 
diversity and inherent complexity of the overall process itself. Thus, the chromato- 
graphic process is in general not amenable to an exact theoretical treatment, and one 
has to resort to simplified models, such as the stochastic theory of Giddings’ or the 
diffusion mode1 treatment of the present authofl. However, for some important 
variants of chromatography, where the operating conditions and column geometry 
are sufficiently simple, an exact theoretical treatment is possible. At present this is 
definitely true only for open-tubular columns with a linear sorption isotherm_ A 
solution to this problem was first given by Golay3, the treatment being later generalized 
by Aris’. The latter approach was based on the method of moments* and thus intro- 
duced a new, powerful tool into the theory of chromafography. Unfortunately, the 
paper by Aris seems to have been overlooked by most workers in the field of chro- 
matography, and the fundamental nature of his work has therefore not been generally 
recognized. In this paper, the application of the method of moments to chromato- 
graphy is reconsidered. It is shown that the treatment can be extended in a na‘tural 
way to packed columns of various geometries. Although the treatment in this instance 
is necessariIy approximate, the mode1 used is sufficiently realistic to make the results 
applicable to most columns of practical interest. 

l In this paper the term “method of moments” refers to the use of statistical momenti as a 
means of transforming differential equations. The author, unaware of the work of Arki, used this 
method earlier in the treatment based on the diffuion model’. 
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SPECIFICATION OF THE MODEL 

For packed columns, an exact treatment of the transport processes in the 
column is not possible, mainly because the velocity field in the mobile phase is un- 
known. It is therefore necessary to use a model in which appropriate simplifications 
have been made. In this treatment we assume the column packing to consist of 
spherical particles (a similar treatment can be carried out for other particle geometries). 
We assume that a spherical shell of arbitrary depth is available to the solute, the 
treatment thus being applicable to both gas-liquid and gel chromatography. 

The approximatiotis involved in the model are best understood by following 
the derivation of the equation for mass balance. Thus, we consider a column of 
uniform cross-section, filled with a suspension of spherical particles in a fluid. Taking 
the x-axis parallel to the column axis, we assume that under the influence of a pressure 
gradient the fluid flows through the cohumn in the direction of the x-axis. The actual 
velocity field in the interparticle space is too complex for a direct analysis_ However, 
the velocity field contains substantial radial components, which vanish when averaged 
over a cross-section of the column. To some extent, these radial components of the 
velocity field cause a cdnvective mixing of the fluid in a cross-section of the column. 
As a first approximation we therefore replace the actual velocity field by the average 
velocity, ~1, in the direction of the x-axis (plug flow), and assume complete convective 
mixing of the fluid in a cross-section of the column. Deficiencies in the last assumption 
can be compensated for by adding an extra “eddy diffusion” term to the axial dif- 
fusivity in the fluid. 

A second approximation is introduced by assuming the particles to be sur- 
rounded by fluid of uniform solute concentration. In the spherical particles, therefore, 
only radial diffusion needs to be considered_ The error involved in this approximation 
decreases when the flow-rate increases, and is probably very small in operative 
columns. With the above assumptions, the equation for mass balance in a segment 
of the column can be written. In the fluid phase we obtain the differential equation 

acl acl - a2 C, sno _ - .-wax + Dl-7 -i- -- 
at Sl J 

where S is the cross-sectional area of the column, S, the average cross-sectional area 
of the fluid phase, c, the concentration in the fluid phase, 0; the coefficient of axial 
Wusivity in the fluid phase, n the number of particles per unit volume of the column, 
(T the surface area of a particle andj the solute diffusion flux at the particle surface 
(counted as positive iu the outward direction). 

We assume that the equilibrium distribution of solute between the fluid and 
a particle is determined by the partition coefficient, K: 

where c, is the concentration in the particle. 
The solute dif%sion flux, j, is then given by 

j = k(c, - Kc& (3) 
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where the subscript RI refers to the surface of the spherical particle and k is the rate 
constant for solute transfer across the interface between the phases. 

Thus, the differential equation for solute transport in the fluid phase is 

acl at=-- ac, l a2 C, - + D,-- ax as+ l  

F (c2 - K& 

In the stationary phase, solute transport is governed by the diffusion equation 
for spheres: 

ac2 D a2c2 t 2 ac, 
-= 2 afl at ( 

--- 
r ar ) 

R2 -K r -K RI 

where D, is the diffusion coefficient in the stationary phase, r is the radial coordinate 
in the sphere, RI is the radius of the sphere and R2 is the inner radius of the sorbing 
shell. -. 

APPLICATION OF THE METHOD OF MOMENTS 

It is not necessary to solve eqns. 4 and 5 for the solute distribution functions, 
but adequate information can be obtained from the moments of the distributions. 
We thus define the moments (i >, 0) 

and 

where 

and 

r;; = I a, xi cl dx (64 
--m 

G1 = 
--P I 

* xi c, dx 

uniform convergence of the integrals is assumed. 
The time derivatives of the moments take the form 

(6b) 

p, = 
--m f 

O” x’-+-dx 

(7W 

To evaluate these derivatives, eqns. 4 and 5 are substituted into eqn. 7. We 
then have to consider integrals of the following type: 

and 

Similar equations are valid for the concentration c,. 
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Thus, with the help of eqns. 8 and 9, eqns. 4 and 5 are transformed into the 
following equations for the moments: 

Fi=iuFi_r+i(i- l)D;Fi-zi- + (Gl - KF&, 
1 

and 

(11) 

for i = 0, 1,2 .__ (in eqn. 10 we have to put F, = 0 for i < 0). 
The general solutions of these differential equations consist of a transient part, 

which depends on the form of the original concentration distribution in the column, 
and a steady-state part, which is independent of the original distribution. It can be 
shown that the transient terms decrease exponentially with time, and the conditions 
in the column rapidly approach the steady state conditions4*5. With columns of normal 
length it is sufficient to consider only the steady-state solutions of eqns. 10 and 11. 

To make the integration of eqns. 10 and 1 I possible, we have to introduce the 
boundary conditions at the phase boundaries and the condition for conservation of 
mass. The boundary conditions are 

aGi 

f-1 ar R2= 0 (12) 

and 

Dz (%)_ = -k (Gi - KFi)RI (13) 

To obtain the condition for conservation of mass, we have to consider moments for 
the total solute distribution in the column. Defining first the average moments in the 
stationary phase, we have 

G,=+- j=G,dI’ 
V 

where the integration is carried out over the volume of the spherical shell. The 
moments of the total solute distribution now become 

M,=S,F,+nSVG, 

DETERMINATION OF THE ZEROTH MOMENT 

For the zeroth moment we obtain from eqns. 10 and 11 

& = + (G,, - KF,,),, 
1 

and 

e,-, = D2 

(16) 

(17) 
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From eqns. 14 and 17 we obtain for the average moment in the stationary 
ph= 

6 _ 4~ 
0 

,.z dr = CD, aGo 
V I R1 G 0 

RZ - ar., V ( 1 (18) 

where we have used the boundary condition in eqn. 12, and the relationship (T = 47rRi. 
From eqns. 16 and 18 and the boundary condition 13 we obtain 

n;r, = &PO + nsvti, = 0 (19) 

Thus 

MO = S,F,, + nSVc, = constant (20) 

is the condition for conservation of mass, MO being the total amount of solute in the 
column. Furthermore, from the steady state solutions of eqns. 16 and 17 we obtain 

Go = KF, (21) 

and 

MO = F&T, f nKSV) (22) 

In determining the steady-state solutions for the higher moments, we normalize 
the concentration distribution functions_ We then define the moments of the nor- 
malized distribution functions as follows: 

Fi =- 
Fo 

(23a) 

gi =2 
- 

gi =g 
0 

(23b) 

(24) 

171i = 
Mi 

- = IV1 fi + w, gi 
MO 

(25) 

where 

Sl 
w1 = s, + nKSV 

(26a) 

and 

nKSV 

w.2 = S, + nKSV 
(2W 

are the weight fractions of solute in the mobile and stationary phases, respectively. 
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For the normalized moments the boundary conditions are 

a.&3 ( ) -= 
af R2 

0 

DETERMINATION OF THE FIRST MOMENT 

(27) 

The normalized first moment determines the position of the centre of gravity 
of the solute distribution within the column. For the individual Crst moments we 
obtain from eqns. 10 and 11, after normalization 

(29) 

and 

( a2 gl tj1=D2 - f _?.a 
afl f af ) 

The average first moment in the stationary phase is given by 

(30) 

(31) 

From eqns. 29, 31 and 25, and the boundary condition 28, we obtain 

which represents the velocity of the centre of gravity of the peak within the column. 
After integration we obtain 

m, = uw,? f A (33) 

where. A is a constant. It will be found convenient for the subsequent analysis to 
choose the coordinate system in such a way that 

A=0 (34) 

Eqns. 29 and 30 also have steady-state solutions of the form of equ. 33. Thus, 
we can write 

fi = UW~ f -I- a1 

and 

~~3 = uwlt+ a2 

(35) 

- cm 
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The_ parameter CQ is a constant, since plug flow was assumed in the mobile 
phase. On the other hand, u2 is a function of r, satisfying the differential equation 

(37) 

The general solution of eqn. 37 has the form 

where the constants C, and C, have to be determined from eqn. 34 and the boundary 
conditions 27 and 28. 

Introducing the quantity 

the results of these calculations can be stated in the form 

muI R; 

“I = .6D, L 1 + 203 + 20, (1 - e’> 
. 

k& I 
f C, 

and 

a, = 6. (9 + -+) + Cl 
U\Vl 

2 

(40) 

(41) 

where 

+ 2% D2 (1 - e’) 
kR, 1 (421 

DETERMINATION OF THE SECOND MOMENT 

For the second moments we obtain from eqns. 10 and 11, after normalization 

(43) 

( a2 g2 2 ag2 &=D2 -‘-‘- 
r ar ) (44) 

and 

(45) 
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From eqns. 43,45 and 25, and the boundary condition 28, we obtain 

fi’ - 
2- 2w, (Zlfl f 0;) = 2ut WI t t 2w, (0; + ua,) (46) 

whence 

m, = 22 w-f t2 + 2w, (0; -j- zza,) t + B (47) 

where B is the constant of integration and represents the width of the original peak. 
The variance p is now obtained as follows: 

lu = m2 - rnf = 2Dt f B 

where the dispersion coefficient D is found to have the value 

(48) 

0‘ = WI (0; + zq) = 0; WI + 
z12 rvf w, R: C 1 +etQ2-4Q3-44e”+59’ 

150, 1 +Q-!-$ 
+ 

+ 502 (1 - e”) 
k R1 1 (49) 

As stated earlier, 0; in eqn. 49 is a composite diffusion coefficient, charac- 
terizing axial diffusivity in the fluid phase. It represents the ordinary Brownian 
diffusion and eddy diffusion_ When the two effects are separated we can write 

Di=Dl+~ez2 (50) 

where D, is the ordinary diffusion coefficient and D, the eddy diffusion coefficient. 
Although the nature of the latter effect is still controversia16-8, a quadratic dependence 
on the average velocity is the most likely. In this respect it is in agreement with the 
Taylor diffusion in open-tubular columns5, and is invariant on flow reversal. 

The Iast term in the square brackets in eqn. 49 requires some comment. This 
term enters the derivation of the equation in a natural way, being due to the inter- 
facial resistance to solute transfer. It thus represents a real physical quantity, present 
in all types of columns_ However, it is reasonable to assume that in most instances 
the magnitude of the constant k is such as to make the contribution from this term 
negligible. 

NON-UNIFCRM COLUMN PACKING 

._A very important factor that influences the performance of real columns is 
the possible non-uniformity of the packing material. Most important are variations 
in particle size or film thickness ahhough the diffusion coefIicient in the particles and 
the partition coefEcient may also vary. These effects will now be considered. 
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For non-uniform packing materials, eqns. 1,5 and 3 can be written in the form 

ac,, -= 
at 

D 

2v ( 8 c,, 2 ac,, 
T+T-T-J 

R2v -C r < R,, (52) 

and 

iv = k, (czlr - K, c&RIp (53) 

where the subscript v denotes a certain species of the particles, each species being 
considered as a different phase. 

The earlier treatment can now be repeated in a straightforward manner with 
these new equations. For the zeroth moment we thus obtain 

and the weight fractions of solute in the different phases become 

Sl 
w1= Sl+SZnt,KpVg 

(55) 

and 

Sn, K, V, 

““’ = S, + SEn, Kv VP 
(56) 

I 

For the first moment, eqn. 33 is still valid, but the constant A is now given by 

(57) 

where a,, belongs to the first moment of phase v: 

glv = Ull; t + azv (58) 

the values of (Lzp being determined by equations similar to eqn. 37. 
Also the variance is still given by eqn., 48, but the expression for D has‘ to be 

replaced by the following expression : 

f 5D2, (1 - e3 
k, R,, I (59) 
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Thus, the dispersion coefficient D is the weighted sum (with the weights w2,) 
of the contributions from the different phases. If the mode-of variation of the different 
parameters in eqn. 59 is known, the value of D can be obtained directly from eqn. 59. 

Ahernatively, eqn. 49 may be employed, using the appropriate average values 
of the parameters. Here we will consider only one important special case, namely 
gel chromatography, when particle size is the only variable. The average particle 
radius in eqn. 49 (for e = 0, k = 00) is then defined by 

where w, = 2Y ‘I+9 
9 

Using the expression for IP tY in eqn. 56 (with Y,, = &TR~,), we obtain 

w: = 2 nv R&/Z nr R& (61) 
P 9 

This average strongly favours the larger particles. For example, if the packing 
consists -of an equal number of particles with radii RI and 2R,, the average is 
K, = 1.915 RI. 

Variation of particle size in the packing material also affects the symmetry of 
a chromatographic peak, and is at least partly responsible for the occurrence of 
tailing in gel chromatography. This can be seen from eqn. 57, which indicates how 
the centre of gravity of the total solute distribution depends on the individual distri- 
butions for the different phases. Evaluating azr from eqn. 38 (for e = 0, k = ca), we 
find 

a2p = “~~” [(+-)I - I] f aI 

and 

Thus, the distance between CQ and CQ is proportional to the square of the 
particle radius, IZIp. As ~29 represents the centre of gravity of the distribution associ- 
ated with the ~th phase, eqn. 63 indicates that contributions from large particles 
accumulate in the tail of the total solute distribution. 

HEIGHT EQUIVALENT TO A THEORETICAL PLATE 

In practical chromatography, the efficiency of a column is normally expressed 
in terms of the height equivalent to a theoretical plate, H. This quantity can be 
defined as folfows: 

H=L--p 
1v 

(64) 



CONTRIBUTIObiS TO THE THEORY OF CHROMATOGRAPHY 11 

where L is the length of the column and mlv and pv are the first moment (elution 
volume) and the variance for the peak in the elution diagram, respectively. Thus, 
the moments in the foregoing treatment have to be transformed into moments with 
respect to the efflux volume. This transformation necessarily involves an approxi- 
mation, as the peak exit process is not amenable to an exact analytical treatment. 
However, as a first approximation the elution volume mlv is the efflux volume at the 
time (t = L./uwJ when the first moment of the peak in the column reaches the end 
point (L) of the column. Thus 

where 6 = uSI is the rate of volume flow through the column. 
Similarly, pv is obtained from y at the time t = L/uw,, by converting to the 

volume coordinate. As the unit length in the column corresponds to the volume flow 
f3/uu*I, we have 

Hence 

(67) 

where the last term is the contribution from the initial peak width, and obviously 
decreases in importance as the length of the column increases. As”-it does not charac- 
terize the performance of a particular column, we have omitted this term in the 
subsequent treatment. 

Concluding the present treatment of packed columns, we can derive ex- 
pressions for the plate height, H, for conditions normally prevailing in gel and gas- 
liquid chromatography. To bring the notations into conformity with common chro- 
matographic practice, we introduce the parameter R, denoting the ratio between 
peak velocity and average mobile phase velocity. From eqns. 32 and 26, we find that 

w, = R WW 
and 

w, = 1 -R (68b) 

For gel chromatography we thus obtain from eqns. 67 and 49 (with e = 0) 

To obtain the plate height in gas-liquid chromatography we introduce the 
thickness of the liquid layer, d = R, - Ri. Then 

p=l-d 
RI (70) 
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and we obtain from eqns. 67 and 49, after series expansion in terms of d/R,: 

;2uR(l -R)d 

k ( 

1 _ d : d2 

x 3Rf 1 
(71) 

Comparing these equations with the plate height expressions obtained in 
earlier theories, we find close agreement with Giddings’ treatment in the terms charac- 
terizing radial diffusion in the stationary phaseg, although differences exist in the 
terms characterizing interfacial resistance to mass transferlO_ This indicates that the 
approximations involved in the present macroscopic treatment are essentially of the 
same nature as the approximations used in the stochastic theories. 
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